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USE OF ARBITRARY QUASI-ORTHOGONALS FOR CALCULATING

FLOW DISTRIBUTION IN THE MERIDIONAL PLANE

OF A TURBOMACHINE

by Theodore Katsanis

Lewis Research Center

SUMMARY

/#._o
A method of analyzing flow through a turbomachine is presented that is

suitable for computer programing. It is assumed that a mean stream surface

from hub to shroud between blades is known. On this stream surface a two-

dimensional solution for the velocity and pressure distributions is obtained,

and then an approximate calculation of the blade surface velocities is made.

This method is based on an equation for the velocity gradient along an arbi-

trary quasi-orthogonal rather than the normal to the streamline as used in pre-

vious methods. With this new method a solution can be obtained in a single

computer run_ even for cases where the distance between hub and shroud is great
and there is a change in direction from radial to axial within the rotor. The

method was successfully applied to a turbine with this type of geometry. These

results are given as a numerical example, and the Fortran computer program is

included. ____

INTRODUCTION

Quasi-three-dimensional methods have been developed for analyzing flow

through mixed-flow turbomachines. One such method (ref. i) is based on the as-

sumption of axial symmetry and on an equation for the velocity gradient along

the normal to the projection of the streamlines on a plane containing the axis

of rotation. This basic method was used (ref. 2) to redesign the hub=shroud

profile of a compressor rotor. The results of reference 3 showed improved per-

formance for impellers redesigned by this method. A computer program using
this method for the design of pump impellers is described in reference 4. In

reference 4, the same velocity gradient equation given in reference i is de-

veloped without the assumption of axial symmetry but with the assumption of a

known stream surface that extends from hub to shroud. The examples used in the

aforementioned references were all compressors or pumps, but the method is
equally applicable to turbines.

These methods use streamlines and their normals to establish a grid for



the solution. In cases where the distance between hub and shroud is great and
there is a large change in flow direction within the rotor, however, the nor-
mals vary considerably in length and direction during the course of the calcu-
lations. Therefore, it becomesdifficult to obtain a direct solution on the
computer without resorting to intermediate graphical steps. The use of nor-
mals, however, is not essential to the method, and it appeared possible to
overcomethis difficulty by the use of a set of arbitrary curves from hub to
shroud instead of streamline normals. Thesearbitrary curves will be herein-
after termed quasi-orthogonals. The quasi-orthogonals are not actually ortho-
gonal to each streamline, but merely intersect every streamline across the
width of the passage. The quasi-orthogonals remain fixed regardless of any
change of streamlines. By using this technique, it appeared possible to de-
velop a computer program that would calculate the velocity and pressure distri-
butions without any intermediate graphical procedures even for turbomachines
with wide passages and a changeof direction from radial to axial within the
rotor blade.

In view of these considerations, a method of analysis utilizing quasi-
orthogonals in lieu of streamline normals was developed. This report presents
the analysis method and contains a discussion of the numerical techniques re-
quired for obtaining solutions with a digital computer. The computer program
developed during this study is included. As a numerical example of the appli-
cation of the analysis method, a radial-inlet mixed-flow gas turbine of high
specific speed is analyzed. Such a turbine, which may have application in gas
turbine cycle space power systems, has a rotor-channel geometry for which this
method, as comparedto previous methods, can yield a quick and direct solution.

METHODOFANALYSIS

The analysis to be presented herein is basically the sameas those pre-
sented in references i, 2, and 4. As pointed out in the INTRODUCTION,the
major difference is the use of fixed arbitrary quasi-orthogonals rather than
streamline normals to establish a grid for the solution. Another difference is
that the reference analyses were based completely on the assumption of isen-
tropic flow, while in this analysis a correction for a loss in relative total
pressure is included in the continuity equation to account for blade losses.

This analysis, as that of reference 4, is based on the assumption of a
meanflow surface between blades. _ general, this surface is assumedto be
parallel to the meanblade surface, with arbitrary or empirical corrections
madeto take care of the difference between the flow angle and the blade angle
at the inlet and at the outlet. Onefactor that is not accounted for by this
assumption is that the actual meanstream surface twists considerably in a
mixed-flow turbine. Despite this assumption, however, reference 3 shows the
value of the analysis method by the improved performance of compressorsre-
designed in accordance with this assumption. Reference S showsthat a two-
dimensional solution for a particular compressor, whencomparedto a three-
dimensional solution, gives values of the through-flow componentof velocity
that are of sufficient accuracy for engineering analysis. For convenience, the
meanstream surface is projected on a plane containing the axis of rotation.



This plane is called the meridional plane. The projections of the streamlines
on the meridional plane are called meridional streamlines.

Analytical Equations

Equations (i) and (2) give the velocity gradient along an arbitrary quasi-
orthogonal in the meridional plane

4 (1}d-'_"= _,A_ - J_-"_"sds/ Ts + - ¢_ _"

where

A
cos_ sin2_COS

+ sin _ sin _ cos _ _--
r c r or

sin 8 _e
c°s2r + sin _ sin _ cos _

CL

r c

C = sin e cos
dWm
dm /awe ) _e2_ sin _ + r cos _k_-_ + 2_ sin _

dW_ /aw e \ ae

-- + r cos _k_-_ + 2_ sinD = cos _ cos _ dm _-fU
The coordinate system and the notation are shown in figures i and 2. (All

symbols are listed in appendix A.) Equation (i) is derived in appendix B.

(2)

Wm

The value of the parameters h i and

associated with a point inside the rotor

is the value of that parameter at the inlet

for the streamline which passes through

that point. Then dh_/ds refers to the

total enthalpy at the inlet as a function

of the distance along the arbitrary meri-

dional quasi-orthogonal near the point in

question.

",,c Streamline
\

"-,,,, "_Arbitrary quasi-
--,,_ _ orthogonal

r .. _ "
l />_ ..-" ,(4

\1/s
Hob- _ z 9oo 'w.,_---

n _"

Figure 1. - Coordinate system and velocity components.
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Figure 2. - Component of relative velocity Wn normal to
arbitrary quasi-orthogonal.
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Cp constant results in

T hi W 2 + 2_X - c_2r 2

' ' 2CpT_T i h i

With W = O,

T" 2m_ - _2r2

, - i - 2CpT IT i

In this analysis, the

arbitrary quasi-orthogonals

were chosen to be straight

lines from hub to shroud

(see fig. 5). At the inlet

and outlet, the lines were

chosen as the leading and

trailing edges, resDectively.

In addition to equa-

tion (i), which is a force

equilibrium equation, the

continuity equation must be

satisfied. This is done by

requiring that the calculated

weight flow across any line

from hub to shroud be equal

to the specified weight flow

through the turbomachine.

For this the density must be

known. If the velocity is

known, the density may be

calculated by equations (5)

to (5) following. Equa-

tion (B9) is

!

h= h i -co_+ 2

_2 r 2 W2

(Bg)

(3)

For isentropic conditions,

Pi -i



which gives the static density at any point once the velocity is known if inlet

total conditions are specified.

To account for losses, it is necessary to make a correction to the above

calculated density. One way to do this is to assume a loss in relative total

pressure Ap", which is a measure of the loss in efficiency. Then

i/(]_-i) p" 1/(T-l) Pisen-
p -- p" = =

RT" RT"

= P_sen - _T-_]

{__i/@-i){T,%i/(y-1) {_ _l/(_-l)

or

(_)

This gives the static density with a specified loss in relative total pressure.

The temperature ratios can be calculated from equations (S) and (4). It is

assumed that inlet total conditions are known.

Weight flow across a quasi-orthogonal can now be computed by

s

w = N _0 PWnr A_ ds (8)

where _0 is the angular distance between blades and W n is the component of
W normal to the surface of revolution generated by the fixed line. From

figure 2, it can be seen that

wn=w moos (_ - a) (7)

To get _8, use is made of the fact that

2_ t8

n8 = _ - _- (8)

where t 8 is the tangential thickness. If the thickness normal to the mean

blade surface tn is specified,

i r2/_0_2 r2/_0_21
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Note that here _e/_r and _e/_z refer to the mean blade shape and not the

assumed mean stream surface. Equations (3) to (5) and (7) to (9) give the nu-

merical data for equation (6), which can be integrated by use of a spline fit

approximation (see appendix C).

With the velocities on the mean stream surface calculated, blade surface

velocities can be calculated by any of several approximate methods. One method

that gives good results, when compared with a relaxation solution of the po-

tential flow equation for a surface of revolution, is based on absolute irrota-

tional flow and linear velocity distribution between blades. The following

equations based on these assumptions are equations (16) and (17) of refer-

ence 6.

c°s _Z c°s _t {2co_ d [ ]})

Wt = + r_(tan _ - tan _t) + _ (r_,+ W sin _)r Ae
cos _Z + cos _t

W_ = 2W - Wt

The derivative can be evaluated by use of a spline fit curve.

Equations (S) to (5) and the equation of state can be used to calculate

the static temperature, density, and pressure on the blade surfaces.

(10)

Numerical Techniques and Procedure

The first step in the analysis is the numerical evaluation of the param-

eters % _, rc, _9/_r, _e/$z, dr/ds, dz/ds, dWm/dm, and dWe/dm for use in

equations (i) and (2). In order to evaluate the parameters _, _, and rc a

streamline geometry must be established. First fixed straight lines (quasi-

orthogonals) are drawn from hub to shroud along which the velocity gradient for

an assumed stream surface will be determined. For an initial approximation to

the streamlines, each quasi-orthogonal can be divided into a number of equal

spaces, as shown in figure 3. The success of the method is based on the fact

that_ for a reasonable assumed streamline pattern, the geometrical streamline

parameters involved are not too different from those of the final solution.

z_ means of a spline fit approximation (see appendix C), dr/dz and
d2r/d can be determined at each of the points established. Then

= tan_ I dr
dz

and

d2r

i dz 2

rc [i + \d-zj{dr_213/2j (ii)

6



The reciprocal of the radius of curvature (the curvature) is computedto avoid
division by zero in case d2r/dz2 = 0.

For the remaining parameters, the meanstream surface e = e(r,z) between
blades is needed_it must be given in such a manner that _e/_r and _e/_z
can be determined at any given point. The spline fit curve can assist in this.
When be/br and _e/bz are known, _ can be calculated from

tan _ = r _ = r_rr _ + _zz = r sin _ + _ cos (12)

For the initial calculation, W may be assumedconstant throughout the rotor.
From figure i, it is seen that

Wm= W cos

and

We = W sin

Since the distance along the meridional streamline m is known, dW_/dm and
dWe/dm can then be determined by the spline fit curve. Since dr/ds and
dz/ds are determined by the angles of the quasi-orthogonals, all the quanti-
ties necessary for the calculation dW/ds from equation (i), except W it-
self, are now determined.

The next step is the numerical integration of equation (i), which is in
the form

d__W= f(W,s)
ds

where f is known only for a finite number of values of s. For a given ini-

tial velocity on, say the hub, the velocity distribution along the quasi-

orthogonal can be approximated by

dW) _s
Wj+ I = Wj + _ J

where the subscripts denote the number of the streamline, and _s is the dis-

tance along the quasi-orthogonal between streamlines. For an improved esti-

mate_ a Runge-Kutta method can be used. The following is a particular Runge-

Kutta method that is well adapted for this case. Let



then

Idw)• + As
w_+l = wj _7 j

. + (dW) msW_+l = wj _-6j+l

W_+I + j+l

Wj+l = 2

(13)

This avoids an obvious bias due to using the derivative at the beginning of the

interval (see fig. 4) and gives a higher order approximation. For a mathema-

tical analysis and error estimate, see reference 7. For the calculation of the

quantity (dW/ds)j, equation (i) is used with the parameters calculated for the

jth streamline and Wj. To calculate (dW/ds)j+l, the parameters calculated for

the (j + i) st streamline are used and _j+l is used for the velocity W in
equation (i).

It should be noted that this method of integrating equation (i) involves

much less computation than solving equation (i) directly and then numerically

evaluating the resulting integral (e.g., eq. (9) in ref. i). This is espe-

cially helpful for hand computation and is also helpful in simplifying computer

programing. Accuracy is probably comparable; the method used here certainly

gives satisfactory accuracy if the streamlines are spaced closely enough so

that the velocity does not vary more than about 50 percent between streamlines.

In the numerical example, the results using five streamlines did not differ

appreciably from those using twenty streamlines.

Completing this computation for a quasi-orthogonal from hub to shroud re-

sults in the complete velocity distribution along that line based on the ini-

tial estimate of the velocity on the hub. Equations (3) to (5) and (7) to (9)

can be used to compute the integrand in equation (6). The numerical integra-

tion can be performed by use of a spline fit approximation (see appendix C).

The computed total weight flow is then compared with the actual weight flow.

,fActual Wj+] ,,_
/ .

h__Approximationto /////

wj.-Cw;+,

wj < z_s

J

/d_t +1As

j+l Wj+ 1 W

Distancealongarbitraryquasi-orthogonal,s

Figure4. - Approximationtosolutionof differentialequationdWlds- f(W,s).

If the computed weight flow is too

small, the velocity on the hub is

increased, and vice versa. Then

the velocity distribution and the

i weight flow are recalculated. The

computed weight flow is a function

of the assumed hub velocity;

therefore, after two values of

weight flow are computed, linear

interpolation or extrapolation can

be used to get an improved esti-

_1 mate for the hub velocity. A few
iterations will determine the hub

_ velocity that will give the cor-

rect weight flow.

8
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Figure6. - Meanstreamsurfacefor numericalexample.

From equation (6) the weight flow

distribution along the quasi-orthogonal

from hub to shroud can also be obtained.

Inverse interpolation (by a spline fit

approximation), can be used to determine

the spacing of the streamlines on the

quasi-orthogonal that will give equal

weight flow between any two adjacent

streamlines (see fig. 5). When this is

done for every quasi-orthogonal from in-

let to outlet, a new estimate for the

meridional streamline pattern is ob-

tained. This pattern, together with the

calculated velocity distribution, can

then be used for further iterations;

however, using this estimate generally

results in overcorrection. Therefore,
only a fraction of the calculated cor-

rection was made. Another problem is

the tendency for the newly computed

streamline to be less smooth than the

previous streamline. If a computation

is based on a set of streamlines that

are not extremely smooth, the calculated

streamline corrections become erratic.

Thus it is important to be sure that the

streamline estimate to be used for the

following iteration be as smooth as pos-

sible. Several methods of accomplishing
this have been tried. The method that

was successful for the cases tried was

to use a streamline correction at each

point of one-tenth the calculated cor-

rection. With this the streamlines re-

mained smooth, and a solution was

reached in a single computer run, re-

quiring about 50 iterations. Computer

execution time was 2 minutes (on the

IBM 7094). The computer program used

for this together with the listing of computed results for the numerical ex-

ample are given in appendix D.

NUMERICAL EXAMPLE

The procedure outlined herein has been programed for solution on a digital

computer. The following results were obtained for a particular turbine. The

hub-shroud profile and quasi-orthogonals are shown in figure 5, together with

the equally spaced streamlines used for the initial assumption. The blade has

radial blade elements with the blade shape indicated in figure 6. There are

15 blades, with no splitter blades. The rotational speed was 51,500 rpm_ and

9



the fluid was air. The weight flow was 0.984 poundper second, inlet total
: temperature was 592 ° R, V e at the inlet was i010 feet per second, and the

total inlet pressure was 42.5 pounds per square inch. The normal blade thick-

ness was given by means of tabulated values on a grid. Blade thickness at any
!

given point was obtained by linear interpolation. It was assumed that h i and

h are both constant from hub to shroud.

At the inlet, the flow surface was assumed to deviate from the blade sur-

face in order to agree with the flow direction coming into the rotor. This

angle at the inlet was -55 °. The meridional streamlines are approximately ra-

dial at the inlet, so that the stream surface was assumed to be independent of

z where it deviates from the blade surface. The 8 coordinate was assumed to

vary as the cube of r (and independent of z) for a given distance from the

inlet. Let rb denote the radius where the mean stream surface is assumed to

deviate from the mean blade shape. Equation (15) of reference 6 gives an ap-

proximate equation for determining rb, which may be written as follows:

rb =, ri e-0.71 Ae

The equation of the stream surface for r _ rb is

(r - rb)5 tan _i

5ri(r i - rb)2

which, when differentiated, becomes

_8 (r - rb )2 tan _i

or ri(r i _ rb)2
(i_)

Inlet

Shroud

FArbitrary quasi-

° rthc°_o°_;ite d stream-

X

p . Static pressure

Pi Reference total inlet pressure

Figure 7. - AAeridional projection of mean stream
surface for numerical example.

_ W . Relative velocity

Figure 8. - Static pressure contours on mean stream Figure 9. - Relative velocity contours of mean stream

surface for numerical example, surface for numerical example.
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(a) Hub.

80O

-- Meanstreamsurface
--- Suction
.... Pressure

1 J 1 1

This is used in equations (2) and (12)

when r > rb but not in equation (9),
since equation (9) refers to the blade

shape. For the numerical example, rb
is about 1.60 inches. At the outlet it

is assumed that the mean stream surface

would follow the blade. There was also

assumed to be a 2.5-pound-per-square-

inch loss of total relative pressure,

varying linearly from inlet to outlet.

i'_' The calculated streamlines are

600 --_-- 1,1, _ shown in figure 7. Since the solution
-'t l" II I"

400 .... _-"_ ,, is restricted to the rotor blade, the
_- __--lj / streamlines near the outlet do not show

/

200 ................... i the effect of downstream geometry. Some

,-," of the other calculated information is
0

__ i-- shown in the figures following. Fig-
-_ _ I

(b)Meansurfaceofrevolution, ures 8 and 9 show lines of constant

1_ pressure and constant relative velocity,

while figure i0 shows blade loading dia-

l200 - _"\ grams at the hub, the mean surface of

l_ ........ _ _ revolution, and the shroud.

J

80C........ 4--- i ------- Figure 8 shows that the pressure

i_ level is always decreasing in the direc-

t.i" / t i tion of flow. This is, of course, nor-

40C..... // / mal for a radial turbine. In figure 9,

i it is seen that velocities are generallyt
_ / increasing, except along the hub near

0 .... ___ _ .... i the inlet where they decrease slightly.

20c Though not desirable, this can be toler-

0 .2 .4 .6 .8 l.O ated because of the favorable pressure

Percentofdistancealongmeridionalstreamline gradient. More serious are the negative

(c)Shroud. velocities in the blade loading diagrams

FicjurelO. - Bladeloadingdiagramfor numericalexample. (fig. 10). This indicates an eddy on

the trailing surface of the blade near

the inlet, which would result in turbulence and mixing losses. Also, a severe

decreasing velocity gradient is indicated on the suction surface near the hub

and near the shroud. This could lead to flow separation with accompanying high
losses.

CONCLUDING R2N_KKS

A method of analysis of turbomachines is presented that is suitable for

computer programing. The method and the results are similar to that obtained

by other streamline analysis methods (e.g., refs. i_ 2_ and 4). The difference

here is that velocity gradients are given along arbitrary quasi-orthogonals,

rather than the normal to the streamlines as has been done in previous methods.
The value of the method lies in the fact that a solution can be obtained in a

ii



single computer run even for cases where the distance between hub and shroud
is great and there is a change of direction from radial to axial within the
rotor. The method was successfully applied to a turbine with this type of
geometry. These results are given as a numerical example, and the Fortran com-
puter program is included in appendix D.

A more accurate hub-to-shroud analysis could be madeby using information
from a blade-to-blade streamline analysis. A blade-to-blade analysis would
give a better approximation to the meanstream surface and also would give the
blade-to-blade streamline spacing. Continuity would then be checked between
the two hub-to-shroud stream surfaces instead of betweenblades.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, September15, 1964
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APPENDIXA

A

a

B

b

C

c

c i

Cp

D

f

g

h

m

N

n

P

Ap"

q

R

r

rb

r c

s

SYMBOLS

parameter, eq. (2)

parameter, eq. (BI_)

parameter, eq. (2)

parameter, eq. (Big)

parameter, eq. (2)

parameter, eq. (BI_)

stagnation speed of sound at inlet, ft/sec

specific heat at constant pressure, (ft)(ib)/(slug)(°R)

parameter, eq. (2)

any function

acceleration due to gravity, ft/sec 2

static enthalpy, (ft)(ib)/slug

distance along meridional streamline, ft

number of blades

distance along normal to meridional streamline, ft

absolute static pressure, ib/sq ft

loss in relative total pressure between inlet and any point

distance along arbitrary three dimensional curve, ft

gas constant, (ft)(ib)/(slug)(°R)

radius from axis of rotation, ft

radius at which assumed stream surface is tangent to mean blade shape

radius of curvature of meridional streamline, ft

distance along arbitrary quasi-orthogonal in meridional plane, ft

13



T temperature, OR

t time, sec

t n blade thickness normal to blade meansurface, ft

t e blade thickness in circumferential direction, ft

unit vector

V absolute fluid velocity, ft/sec

W relative fluid velocity, ft/sec

w weight flow crossing surface of revolution generated by quasi-orthogonal
between hub and given point on quasi-orthogonal

x x-coordinate

y y-coordinate

z axial coordinate

angle between meridional streamline and z-axis, radians

angle between relative velocity vector and meridional plane, radians

y ratio of specific heat

8 relative angular coordinate, radians

_e angle between blade surfaces at given point, radians

prerotation riVsi _ sq ft/sec

0 mass density, slugs/cu ft

absolute angular coordinate, radians

angle between quasi-orthogonal and radial direction_ radians

rotational speed, radians/sec

Subscripts:

i inlet

isen isentropic

j numberof streamline

1%



leading surface

m componentin direction of meridional streamline

n normal component

r radial component

s shroud

t trailing surface

x x-component

y y-component

z axial component

e tangential component

Superscripts:

m vector quantity

' absolute stagnation condition

" relative stagnation condition

15



APPENDIXB

DERIVATIONOFTHEVELOCITYGRADIENTEQUATION

Euler's force equation for a nonviscous fluid is

dV i
- _ (m)

dt 0

This is simply expressed as three scalar equations in fixed rectangular coordi-

nates x, y, and z. To reduce the problem to a steady-state condition, equa-
tion (BI) should be expressed in

F - tsin _)Ux
!

/ ',_\1 ,-_cos_ \
/ i %\ l_Z.......

Figure11.- Relationsbetweenunit basisvectorsinabsoluterectangular
coordinatesandrelativecylindricalcoordinates.

_r = (cos _)_x + (sin _)_y _ (B2)

_o = - (si__)_ + (cos_)_J

terms of the relative velocity

and the pressure gradient relative

to a rotating cylindrical coordi-

nate system r, 8, and z. The no-

tation ux is used to denote a

unit vector in the x direction;
similar notation is used for the

other coordinates. It should be

noted that the directions of the

vectors ur and u@ are functions

of t as well as of _. It is

seen from figure ii that

Differentiating equation (B2) results in

}

d-_- = - sin qo _x + cos 9 % = _dt [8 = --r UO

d_o _ _t VO-d--_-= - cos q_ _x - sin 9 [ y= - 7-Ur

(33)

Since V = Vr_ r + Vs_ 8 + Vz_z, equation (BS) can be used to get

_V d(Vr_) d(Ve_s) d(Vz_z)
dt dt dt dt

dVr _
: --u r +dt

VrV 8 _ dV8 _ __ dV z _

rue + d--{--ue - _Urr + _ Uz

V2_1 dVz
_r + 1 d(rVo) _s + _ _

r dt dt
(_)

16



The pressure gradient will nowbe expressed in the relative coordinates.
For the fixed cylindrical coordinates r, _, and z,

+i

m m

Note that actually u_ = u@, when _ and e refer to the same point (%
varies with time, since _ varies with time for constant e). Also

_/_ = _p/_8, since _9/_e = 1. This gives

+i (B5)

Noting that Wr = Vr, W z = V z and V e = W e + _r, substituting equa-

tions (B4) and (B5) in equation (BI), and equating coefficients of _r, _e, and

_z result in

_wr (we + _)2 = _ 1 (B6a)
dt r p

l d(rWe +_r2)

r dt = _ 1__ "_8 (B6b)
pr

dW z
= _ i__ (B6c)

dt p

Now an expression for the directional derivative of the relative velocity

in any direction will be derived. The parameters in this expression require

the knowledge of the streamline passing through a given point] however; once

the streamline is known_ the velocity gradient in any direction can be com-

puted.

If q denotes the distance along an arbitrary curve, the directional de-

rivative of the pressure p along this curve is

dq = _ + _ + dq

Using equations (B6) gives

i m= [_w_ (we+_)_] dr d(rWe+_2) de dWzd_
- _ dq ] _+ -- (BT)d-_- " r dt dq + dt dq

Equation (B7) is an expression for the pressure gradient in the q direction.

It is necessary to find a relation between the velocity gradient and the pres-

sure gradient. This is easily done under the assumption that the flow is isen-

tropic_ so that

17



dp= dh
P

Now multiplying equation (B6a) by W r = dr/dt, equation (B6b) by W8 = r de/dt,

and equation (B6c) by W z = dz/dt, then adding and combining terms yield

i dW2 _ _2r d_ i a]5=_2 6(r 2) dh
2 dt dt p dt 2 dt dt

which is the energy equation for isentropic flow. Integrating from the inlet

along a streamline results in

W 2 - W_ = ¢o2(r2 - r_) - 2(h - hi) (B8)

Since Vm = Wm and V e = W e + ur,

Vz - V_ = W2 - w_-- W2 - V_ + 2Year -_2r2

or

V2 = W2 + 2Vs_ar - _2r2

hence_ at the inlet_

hi = hi + T = hi +

W_i + 2_ - _2r_

Substituting this for h i in equation (B8) gives

v - 6U_+h=h i 2

_2r2 _ W2

Since the flow is assumed isentropic, differentiating results in

T

i dp dh dhi dh dr dW
p dq = _q dq 0_q + _r W--- =--- _q- dq

Substituting this equation in equation (B7) yields

r

dw dhi dWr
+ LT

+
d-_ = W dq W dq W dt

(We + _°r)2] dr i d(rW8 + am2) de
-- +

dt dq

Note that Wm = W cos _ and

(B9)

i dWz dz

W dt dq

(BI0)
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d_ d_ dm Wm

dt dm dt rc

Using this and differentiating Wr = Wm sin _ and W z = Wm cos

dWr W 2 cos2p cos

dt rc

dWm
+ W sin _ cos _ _--

dWz W2 cos2_ sin

dt .rc + W cos _ cos _ _--

result in

Also,

i d(rVo)
W dt

i d(rW8 + r2_)

= W dt

dW 0

= r cos _ _ + W sin _ cos _ sin _ + 2rco sin _ cos

(m2)

Using equations (BII) and (BI2) and the fact that

W@ = W sin _ in equation (BI0) gives

. fdW = a d__r+ b d___z+ c d__e+ i dhi

dq dq dq dq W

where

W cos2_ cos W sin2_

rc r

dWm
+ sin _ cos _ _--- - 2co sin

W cos2_ sin _ dWm

+ cos _ cos _ _--
r c

\--[dW8 _)c = W sin _ cos _ sin _ + r cos _-_ + 2co sin

J

The meridional plane analysis is concerned with the projection of the

curve q onto the meridional plane. This projected curve will be the quasi-

orthogonal. Letting s denote the distance along this meridional projection,
then

dW dW • d__9. a + b + +
ds = dq ds = _ _ c _ W \d-_- - co

(BI5)

If the line s is a normal to the meridional streamline, then s = n,

dr/de = dr/dn = cos c_, and dr/de = dz/dn = - sin _, and equation (BI5) reduces
to equation (B24) of reference 4.
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The quantities d_/ds and dz/ds in equation (BI5) are determined by the

parametric equations for the arbitrary curve in the meridional plane, r = r(s),

and z = z(s). The quantity de/ds refers to the change in 8 in the actual

curve q. If the curve q lies on a hub-to-shroud surface, which can be de-

fined by 8 _ @(r, z), then

ae _e _ + _o az (me)
a-_-- a7 a-_ _z

By substituting equations (BI4) and (BI6), equation (BIS) can be rewritten in

the following form:

where

tion.

cos _ cos2_ sin2_r + sin _ sin _ cos $ _rA

r c

sin _ cos2_ + sin _ sin _ cos _ _8
r c OZ

C = sin _ cos _ -- -
dWm
dm /dWe _) 8e2_ sin _ + r cos _t_ -_ + 2co sin _Tr

aw_ /awe _) _oD = cos _ cos _ _--- + r cos _t_-- + 2zo sin

(2)

Equation (i) is written in a form that is convenient for numerical solu-
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APPENDIXC

USEOFSPLINEFIT CURVES

If a set of function values corresponding to a set of arguments is given,
there are several ways a curve can be fitted through these values so as to ap-
proximate the original function with these values. The classical way is by an
nth-degree polynomial for n + i points. This maynot be satisfactory, how-
ever, for a large numberof points, especially for computing derivatives or
curvature at end points. Another technique is to use fewer points to determine
somesort of piecewise polynomial, but this does not lead to a smooth curve. A
method that has received muchattention recently is the piecewise cubic, with
matching first and second derivatives, commonlyreferred to as a spline fit
curve. Since for small slopes, the second derivative approximates the curva-
ture of a function, the strain energy of a spline can be approximately mini-
mized by minimizing f[f"(x)] 2 dx, where f(x) denotes the curve described by

the spline. The spline fit curve has this property. This is proven in refer-

ence 8. Thus the spline fit curve is a mathematical expression for the shape

taken by an idealized spline passing through the given points. In reference 8,
a simple procedure is outlined for determining the spline fit curve when the

coordinates of the points are given together with two arbitrary end conditions.

The end condition actually used in the computer program was that the second

derivative at an end point is one-half the second derivative at the next point.

This is equivalent to bending the spline beyond the last point slightly, in-

stead of just letting it be straight. The spline fit curve provided a simple

analytical method of determining many of the parameters in the equations. The

spline fit curve was used to determine first and second derivatives, curvature,

interpolated function values, interpolated derivatives, and for integration.

One further point concerning the spline fit should be mentioned_ that is,

the approximation to an actual spline curve is dependent on the slope not being
too large. Experimentally, good results are obtained if the absolute value of

the slope is not greater than one. In applying this method to streamlines on a

radial turbine, there is a problem since the angle may be around -90 ° at the

inlet. This is easily overcome by rotating the coordinate axes 45 ° so that the

maximum slope is about one.
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APPENDIXD

FORTRANPROGRAMUSEDFORNUMERICALEXAMPLE

Description of Main Program

The FORTRANprogram listed herein is the one used in the numerical ex-
ample. It is written in FORTRANIV and was run on an IBM7094 digital com-
puter. The program closely follows the steps given in the section on numerical
procedure. The list of program variables preceding the program indicates the
equation that is used to calculate a variable or the equation in which it is
used. In the program, the numberof the streamline is denoted by K and the
numberof the quasi-orthogonal by I. The inlet or the hub is denoted by i.
The program is written so that all linear measurementsare in inches, angles are
in degrees, and pressure is in poundsper square inch for both input and output.
Units are changedto feet and radians for computation in the program. All other
quantities are in the units specified in appendix A.

It will be noted that a complete listing of input data cards is printed
out. In the sample program, for example, the listing gives all the data used
as input for the program. All input statements precede the commentcard
ENDOFINPUTSTATEMENTS.

A

At(J)

ALM

AR

B

Ba(K)

BCDP

BETA( I,K)

Program Variables and Definitions

temporary storage

temporary storage

temporary storage

temporary storage

(input variable)

R (input variable)

temporary storage

total weight flow between hub and Kth streamline

integer (input variable); i will give DN, WA, Z, and R as output

on cards in binary form after final iteration, for use as input

for alternate conditions; 0 will cause this to be omitted
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BETAD

BETAT

BETIN

C

C_(I,K)

CB_A(I,K)

CEF

CI

CORFAC

COSBD

COSBT

CP

c_v( I,K)

D_BTA(Z)

DELTA

DENSTY

D_(I,K)

DRDM(I)

_DR(1)

D_DZ(I)

DW_DM(I)

DW_DM(I)

E

ERROR

ERROR1

_Z, eq. (i0)

_t' eq. (i0)

_i (input variable), eq. (14)

temporary storage

COS

COS

tan _/ri(r i - rb)2 , eq. (14)

ci

percentage of calculated streamline correction to be used for next

iteration (input variable)

cos _Z, eq. (i0)

cos _t' eq. (i0)

Cp

i/r c

_t - _Z' eq. (i0)

calculated streamline correction (fig. 5)

Pg

distance along quasi-orthogonal from hub

__d [(re + W sin _)r A8], eq. (i0)
dm

_8/_r, eq. (2) and (12)

_e/_z, eq. (_), (9), and (12)

dWm/dm , eq. (2)

dwe/_, eq. (2)

temporary storage

maximum calculated streamline correction for present iteration

(fig. 5)

ERROR from previous iteration
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EXPON

G

GAM

KR

HZ

I

IND

ITER

J

K

KMX

KMXM1

MR

MTHTA

MX

MZ

NPRT

NULL

OMC

PLOSS

PRS(I,K)

PSI

R(I,K)

24

eq. (S)

temporary storage

y (input variable)

increment along quasi-orthogonal in r-direction

increment along quasi-orthogonal in z-direction

subscript to indicate number of quasi-orthogonal, i at inlet and

MX at outlet

code number for use by subroutine CONTIN

number of iterations to be performed after ERROR is less than TOLER

or after ERROR has started to increase (input variable); if

ITER = O, data will be printed for every iteration; if ITER > O,

data will be printed only for final iteration

subscript

subscript to indicate number of streamline, i at hub and KMX at

shroud

number of streamlines (input variable)

KMX - i

number of r values of TN in thickness table (input variable)

number of values of THTA in table of e against z (input variable)

number of fixed lines (input variable)

number of z values of TN in thickness table (input variable)

data is listed for every (NPRT) th streamline (input variable)

dummy variable, not used

i. - CORFAC

Ap" at outlet (input variable), eq. (S)

P

@, eq. (7)
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RB

RC

RH(I)

RHO

ROOT

RS(T)

RUNO

SA(T,K)

S_(I,K)

SB(I,_)

SBm_A(T,K)

SC(I,K)

SD(I,K)

SFACT

sM(I, K)

SRW

T

TEMP

_TA(J)

_(J,K)

TOLER

TP

TPPIP

rb (input variable), eq. (14)

i/r c

r-coordinate of hub (input variable)

t

pig (input variable)

r-coordinate of shroud (input variable)

integer, run number

A, eq. (2)

sin

C, eq. (2)

sin

s, eq. (s)

n, eq. (S)

blade multiplier to allow for splitter blades (input variable)

distance from inlet along meridional streamline

integer (input variable) that will cause subroutines to write out

data for certain values, used in debugging; SRW - 15 causes
SPLINE to write

tn (interpolated)

Ti (input variable)

8 (as function of z) (input variable), blade shape (fig. 6)

tn (input variable), first subscript refers to z-coordinate,

second subscript refers to r-coordinate

if maximum calculated streamline correction is less than TOLER,

iterations are considered to have converged and desired output is

printed (input variable)

r _e/_z

Tf !

T /Ti, eq. (4)
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TQ

TT(I,K)

TYPE

TIP

W

WA(I,K)

WAS

WASS

WT

W_(K)

WTHRU

WTOLER

WmR(I,K)

XN

XR(J)

XT(J)

xz(J)

Z(I,K)

ZH(1)

zs(1)

z SPLIT

r _e/_r

te, eq. (9)

integer (input variable)_ used as code to indicate how arrays DN_

WA, Z, and R are given initially

0 - These quantities will be calculated by progrmn

i - These quantities are given as input on binary cards

2 - Quantities just computed for previous case will be used for

next case (Used only when more than one case is calcu-

lated on single computer run)

T/T_, eq. (5)

(input variable)

W, eqs. (i) and (15)

w*, eq. (13)

W**, eq. (iS)

total weight flow

calculated total weight flow between hub and Kth streamline,

eq. (8)

wn, eq. (7)

If IWTFL(K,X)- WTI < WTOLm (inputvariable),thenvelocitydis-
tributionsused for computing eq. (6) is accepted as solution to

eq. (i)

Wt, eq. (i0)

N (input variable)

r-coordinate of TN in thickness table (input variable)

z-coordinate of THTA for blade shape (input variable)

z-coordinate of TN in thickness table (input variable)

z

z-coordinate of hub (input variable)

z-coordinate of shroud (input variable)

z-coordinate where splitter ends (input variable)
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Fortran Program Listing

COMMOn! SPW

DIMENSION AL(21,2]),BFTA(21,21),CAL(21,21},CmPT_(21,21),
1CU_V(21,21),DNf21,21),mOS(21,21),_(2],2]),Z(2],2]),SM(21,21),
2SA(21,21},SB[2],21),SC(21,211,SD(21,2]),SALI21,21),SBFTA(21,21),
3TNI21,21),TT(21,21),WA(21,21),WTR(21,21)

DIMFNSION ABI21),AC(21),AD(21),BA(21),DELBTA(21}_DRDM(21),
1DTDeI21),DTDZ(21),DWMDMI21),DWTDM(21),RH(21),RS(21),ZHI21),ZS(21),
2THTA(21),WTFL(21),XR(21),XT(21),XZ(21)

INTEGF_ RUNO,TYOE,BCDP,SPW
RUNO=O

10 REA_ (5,1OI0)MX,KMX,MP,MZ,W,WT,XN,qA_4,Ap
ITN0 = 1
RUN0=RUN0+I

WRITE (6,1020) RUNO

WRITE C6,1OIO)MX,KMX,MR,MZ,W,WT,XN,GAM,AR

READ (5,10101TYPE,BCDD,SRW,NULL,TEMP,ALM,RH0,TOLER,PLOSS,WTOLER

WRITE(6,1OIO)TYPE,BCDP,SRW,NULL,TEMP,ALM,PHO,T_LER_PLOSS,WTOLER
READ (5,1010)MTHTA,NPRT,ITER,NULL,SFACT,ZSmLIT,BETIN,RB,CORFAC
WRITE(6_IOIO)MTHTA,NPRT,ITER,NULL,SFACT,ZSPLIT,BETIN,RB,CORFAC
READ(5,1030)(ZS(1),I=I,MX]

WRITEC6,1OB0)(ZS(1),I=I,MX)

READ(5,1030)(ZHfl),I=I,MX)

WRITE(6,1030)(ZH(1),I=I,MX)

READ(5,1030)CR£(1),I=I,MX)

WRITE_6,1OBO)(PS(1),I=I,_X)

PEAD(5,1030)IPH(1),I=!,MX)

WRITEf6,1¢30)(PHII},I=I,MX)

DO 20 I=I,MX

ZS(1)=ZS(1)/12.

ZH(1)=ZH(1)/12.

RS(1)=RS(1)/12.

20 RHII)=RHfI)/12.

IF(TYPF.NE.O) GO TO 40

WA(1,!) = WT/RHO/(ZS(1)-ZHI1))/3.14/IRS(1)+_H(1))
DO 30 I=I,MX

mN(I,KMX)=SQRTIIZSfl)-ZH(II)**2+IRSII}-RHII))**2)
DO _0 K=I,KMX

DN(I,K)=FLOAT(K-1)/FLOATIKMX-I)*DN(I,KMX)

WA(I,K)=WA(I,I)

Z(I,K)=DNCI,K)/DN(I,KMX)*(ZS(1)-ZH(1))+ZHCl}

30 RII,K)=DN(I,K)/DN(I,K_X)*(RS(1)-RHII))+RHII)

GO TO 5O

4C IFITYPF.NE.1) _O TO 145

CALL BCREAD(DNfl,1),DN(21,21))
CALL BCREAD (WA(I,I),WA(21,21))

CALL BCREAD (Z(I,I).Z(21,21))

CALL BCREAD (R(I,I),R(21,21)}
WRITE (6,1040)

50 READ (5,1030)(THTA(I)_I=I,MTHTA)

WRITE (6,t03C)(THTA[I},I=I,NTHTA)
READ (5,1030)(XT(I),I=I,_THTA)
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C
C
C
C
C
C

6D

WRITEI6,1030)(XT

DO 60

READ
WRITE
READ
WRITE
READ
WRITE

K=I,MR

5,1030) T

6,1030) T
5,1030) X
6,1030) X

5,1OqO) X

6,1030) X

(1),I=I,MTHTA)

N I,K),I=I,MZ)

N I,K),I=I,MZ)

Z I),I=I,MZ)
Z I),I=I,MZ)

R I),I=I,MR)

R I),I=I,MR)

END OF INPUT STATEMENTS

SCALING-CHANGE INCHES TO FEET AND PSI TO LB/SO FT,

CALCULATE CONSTANTS

70 DO 90 K:I,MP
DO 80 I=I,MZ

RO TN(I,K) = TNII,K)/12.
90 XRIK) = XR(K)/12.

DO 1OO I=I,MZ
I0C XZII) = XZII)/12,

DO 110 K=I,KMX

11_ SMII,K)=O.

BAll)=O.

DO 12_ K=2,KMX

12C BAIK) = FLOAT(<-I)*WT/FLOAT(KMX -i)

DO 13_ I=I,MX

IBO DN[I,Z)=O.
DO ]_0 I=I,MTHTA

140 XTI I)=XTII)/12.
ROOT = SQPTI2.0)

IL5 CONTINUE

TOLER =TOLER/12.

RB=RB/12.
ZSPLIT = ZSPLIT/12.
PLOSS=PLOSS*I4_.

CI = SQRTIGAM*AR*TEMP)
WRITE 16,1050) CI

KMXM1 = KMX-I

CD=_R*GAM/IGAM-1.)

EXPBN = 1./(GAM-I.)

BETIN = -BETIN/57.29577

RINLET = IRSI1)+RHll))/2.

CEF=SINIBETIN)/COSIBETIN)/RINLET/IRINLET-RB)**2

ERROR=tO0000.

BEGINNING OF LOO p POR IT_PATInNS

150 IF(ITER.EQ.O) WPITE (6,1060) ITNO

IF(ITER.EQ.O) WRITE (6,1070)
ERRORI:ERROR

ERROR=O,

STAPT CALCULATION OF DARAMFTFPS

DO 2BO K=I,KMX

INITIALIZE,

P.8



C
C
C

C

DO 160 I:I,MX

AB(1) = (Z(I,K}-R(I,K})/RDOT
160 ACII)=IZ(I,K}+R(I,K))/RDOT

CALL SDLIN_ (AB,AC,MX,ALC1,K),CURV(1,K))

DO 17e I=I,UX

CUPV(I,K)=CUPV(I,K]/(1.+AL(I,K)**2)**I.5

ALCI,K) = ATAN(AL(I,K))-°785_98

CAL(IoK) = CRS(AL(I,K))

17n SAL(I,_) = SINCAL(I,K))
DO 180 I=2,MX

180 SN{ I_K) = SMII-I,K)+SQRT(IZ(19K)-Z(I-I,K)}**2+(R(19K)-R(I-I_K))**
1 2)

19_ CALL SPLDEP(XT(1).THTA(1).MTHTA.Z(1,K),_X,mTD7(1))
DO 220 I=I,MX

CALL LININT(Z(I,K),R(I,K)gXZgXR,TN,21921,T)
IF(P(I,K).LE.RB}GO TO 200
DTDR(I}=CEF_(R(I,K)-RB)_2
GO TO 210

200 DTDR(I }=0,
210 TQ=R(I,K)_DTDRCl)

TP = RII,K)*DTDZ(1)
TT(I,K)=T_SORT(I,+TP*TP)

BETA(I,K)=ATAN(TP*CAL[I,K}+TQ_SAL(I,K)]
SBETA(I,K) = SIN(BETA(I,K)}
CBETA(I,K) = CQS(BETA[I,K])

SA( I,K)=CBETA(I,K}**2_CAL[I,K)_CURV(I,K)-SBETAII,K)*_2/R(I,K)+
ISAL(I,K)_CBETA_I,K)*SBETAII,K)*DTDR(1)

SC[ I.K)=-SAL(I,K)*CBETA(I.K)_2_CURV(I,K)+SAL(I,K)*CBETAII,K)
I_SBETA[I,K]*DTDZ(1)
AB(1)=WA(I,K)*CBETA(I,K}

220 AC(1)=WAII,K)*SBETAII,K)

CALL SDLINE(SM(I,K),AB,MX,DWMDM,AD)

CALL SmLINE(SM(I,K),AC,MX,DWTDM,AD}

IF((ITER.LE.O).AND. IMOD(K-I,NPRT).EQoO)) WRITE (6,1080) K

DO 230 I=I,_X

SB(I,K)=SAL(I,K)*CBETA(I,K)*DWMDM(1)-2.*W*SBETA(I,K)+DTDR[I)*

1R(I,K}*CBFTA(I,K)*(DWTDq(I)+2.*W*SAL(I,K))
SD(I.K)=CAL(I,K)*CBETA(I.K)_DW_D_(I]+DTDZ(I]_

1R(I,K)_CBETA(I,K]*(DWTDN(I}+2°_W*SAL(I,K))
IF((ITER.GT.O)°OR.(NOD(K-1.NPmT).NE.O))GQ TD 230
A= AL(I,K)*57.2£577
B= SM(I,K)_12.
E= TT(I,K}*12.

G=BETA(I,K)*57.29577

WRITE (6_1090) A,CURV(I,K),B,G,E.
230 CONTINUE

SA(I.K),SB(I_K],SC(I,K),SD(I,K)

END OF LOOm - PARAMETER CALCULATIDN

CALCULATE BLADE SURFACE VELOCITIES (AFTER CONVERGENCE]

IFIITER°NE.O) GO TO 260

DO 250 K=I,KMX

CALL SPLINE (SM(I,K),TT(I,K),MX,DELBTA,AC)
A=XN
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C

C
C

C

DO 240 I=I,MX

24_ AB(1)=CRI I,K)*W+WA(I,K)*SBFTA(I,K))_C6.283186*PII'K) /

CALL SDLINE (SMII,K),AB,UX,DRDM,AC)

IF (SFACT.LF. 1.0) GO TO 245

A = SFACT*XN

DO 244 I=I_MX

244 ABCI)=fR(I,K)*W+WACI,K)*SB_TA[I,K))*{6.283186_PC],K)/

CALL SnLINE (SM(1,K),AB,_'X,AD ,AC)

245 DO 250 I=I,MX

BETAD = BETA(I,K)-DFLBTACI}/2.

BETAT = BETAD+DELBTACl)

COSBD = COSIBETAD)

COSBT = COS(BETAT)

IF(Z(I,K).LT.ZSPLIT) DRDM(1) = AD(1)

WTP(I_K)=COSBO*COSBT/(COSBD+C_SBT)*(2.*WA(I,K)/COSBD+P(I,K)*W*

I(BTTAD-BFTAT)/CBETAIItKI**2+DRD_(II)

250 CONTINUE

A-TT(I,K))

A-TT(I,K))

END OF BLADE SURFACE VELOCITY CALCULATIONS

START CALCULATION OF WEIGHT FLOW VS. DISTANCE FROM HUB

26_ DO m7o I=I,MX

IND=I

DO 270 K=I,KMX

270 AC(K)=DN(I,K)

GO TF 29_

280 WA(I,1)=.5*WA(I,1)

29D DO 300 K=2,KMX

J=K-1

HR=_(I,K)-q(I,J)

HZ=Z(I,K)-Z(I,J)

WAS=WA(I,J)*(L.+SA(I,J)*HR+SC(I,J)*HZ)+SB(I,J)*HP+SD(I_J)*HZ

WASS=WA(I,J)+WAS*(SA(I,K)*HR+SC(I,K)*HZ)+SB(I,K)*HP+SD(],K)*HZ

300 WA(I,K)=(WAS+WASS)/2.

310 DO 340 K=I,KMX

TIP= I.-(WA(I,K)W*2+2.*W*ALM-(W*R(I,K))**2)/2./Cm/TE_P

IF(TIP.LT..0) GO TO 280

TDDlP= 1. (2,*W*ALW-(W*R(I,K))**2)/2./Cn/TEMm

DENSTY=TIP**_XPON*RHO-(TIP/TPPID)**EXP_N*PLqSS/AP/TDmlm/TE _m

1 *_2.17*SM(I,K)/SM(MX,K)

PRS(I,K}=DENSTY*AR*TID*TFMP/32.17/144.

IF(ZS(1).LE.ZH(1)) GO TO 320

PSI=ATAN((RS(1)-RH(1))/(ZS(1)-ZH(1)))-1.5708

GO TO 330

_20 PSI=ATAN((ZH(I)-ZS(I))/(RS(I)-RH(I)))

330 WTHRU=WA(I,K)*CBETA(I_K)*COS(PSI-AL(I,K))

A=XN

IF(Z(I,K).LT.ZSPLIT) A=S_ACT*XN

C = 6.283186*R(I,K)-A*TT(I,K)

340 AD(K)=DENSTY*WTHRU*C

CALL INTGRL(AC(1),AD(1),K#X,WTFL(I))

IF {ABS(WT-WTFL(KMX))°LE°WTDLER) GO TO 350

CALL CONTIN (WA(I,1),WTFL(KMX)_IND,I,WT)

IF (IND.NFo6) c.R TO 29n
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C
C
C

C

B50 CALL SPLINT (WTFL,AC,KMX,BA,KMX,AB)

Dg B60 K=I,KMX

DELTA=ABS(AB(K)-DNII,K)}

DN(I_K)=(I,-CORFAC)*DNII,K)+CORFAC*AB(K)

360 IF[DELTA,GT,ERROR)ERROR=DELTA

370 CONTINUE

END OF LOR m - WEIGHT FLOW CALCULATION

CtLCULATE STREAMLINE COORDINATFS FOR NEXT ITFQATION

380

DO qPO K=2tKMXM1
00 380 I=I,MX

Z(I,K)=DN(I,K)/DN(I,KMX)*IZS(I)-ZH(I))+ZH(I)
R(I_K)=DN(I,K)/DN(ItKMX)_(RS(I)-RH(I))+RH(I)
IF((ERROR.GE.ERRORI),ORo(ERROR.LE.TOLER)} ITER=ITER-I

IF(ITFP.GToO) 50 TO 410
WRITE (6,1100)
DO 400 K=I,KMX,NmRT

WRITE (6_1080) K

D0 390 I=I,MX

AB(I)=IZ(I,K)-RII,K))/ROOT

B90 AC[ I)=(Z(I,K)+R(I,K))/ROOT
CALL SPLINE (AB,AC,MX,AL(1,K),CURV(1,K))
DO 400 I=I,MX
CURV(I,K)=CURV(I,K)/(lo+AL(I_K}**2)**I,5

A=DN(I,K)*12,
B= Z(I,K)*12,
D= R(I,K)*12,

400 WRITE (6_1110)

WRITE (6,1130)
4!0 A=EmORo*12.

WRITE (6,112_) ITNff_A

ITN0=ITNO+I

IF (ITFR.GE.0) GO TR 150

IF(BCDD.NE.1) GO TO i0

tALL BCDUMP (DN(I,I),DN(21,21))

CALL BCDUMP (WA(I,I),WA(21,21))

CALL BCDUMP ( Z(1,1}, Z(21,21))

CALL BCDUMP ( R(1,1), P(21,21))

42 n G0 TU 10
1010 FORMAT 415,6F10.4)

1020 FORMAT 8HIRUN NO.IB,10X,25HINPUT

103C FORMAT 7F10.4)

1040 FORe'AT IOX24HBCD CARD£ FOR DN,WA_Z,R
1050 FORM#T 36HK STAG, SPEED OF SOUND

1060 FORMAT ///5X13HITERATION NO. I3)
107D FORMAT IH 6X5HAL 9X5HRC 9X5HSM

IX5HSB 9XSHSC 9X_HSD )

1080 FORMAT (2XIOHSTmEAMLINFI3)

1090 FORMAT (9F14.6)
1100 FORt#AT (1HL9X5HDN 15X5HZ 15X5HR

1TR14X3HRC )

1110 FORMAT (6F19.6,F18.6)
1120 FORMAT (18H ITERATION NO.

IFIO.6)

ll_n _OC'4AT (1HJ)

END

A,B,D,WA(I,K),PRS(I,K),WTR(I,K),CURV(I,K)

DATA CARD LIqTING )

)
AT INLET = ,F9.2)

9X5HBETA 9XmHTT 9XSHSA

15X5HWA 15XSHPRS 14X3HW

13, 10X,24HMAX. STREAMLINE CHANGE =

31



Description of Subroutines

The subroutines SPLINE, SPLINT, SPLDER, and INTGRL are based on the spline

fit curve (see appendix C). SPLINE gives the first and second derivatives,

SPLINT is used for interpolation, SPLDER is used for interpolated values of the

derivative, and INTGRL is used for numerical integration of a function given at

unequally spaced points. The calling sequences for these subroutines are as
follows:

CALL SPLINE (X,Y,N,SLOPE,EM)

where

X

Y

N

SLOPE

EM

input array

input array, function of X

input, number of X and Y values given

output array, first derivative, dY/dX

output array, second derivative, d2y/dX 2

CALL SPLINT (X,Y,N,Z,MAX,YINT)

where

X

Y

N

Z

MAX

YINT

input array

input array, function of X

input, number of X and Y values given

input array, values at which interpolated function values are desired

input, number of Z values given

output array, interpolated values

where

CALL SPLDER (X,Y,N,Z,MAX,DYDX)
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X input array

Y input array, function of X

N input, numberof X and Y values given

Z input array_ values at which the derivative is desired

MAX input, number of Z values given

DYDX output array, derivatives at each Z

CALLINTGRL(X,Y,N, SUM)
where

X input array

Y input array_ function of X

N input_ numberof X and Y values given

x(1)
SUM(1) outputarray, X(1) Y DX

The subroutines SPLINE, SPLINT, SPLDER, and INTGRL are as follows:

SURPOUTINF SDLINE (X,Y,N,SLQOF,FM)"

DIMENSION X(50),Y(50),S(50),A(5n),B(Sn),C(5o),m(50),W(50),SB(50),
]G(50),T_(50),SLDPE(50)

C 0_

INT

DO

10 S(I
NO=

DO

A I

B I

C I

23 F I
A N

B 1 =

B N =

C 1 =

F 1 =

F N =

W 1

SB(

G(I

DO

W(I

SB(

_ON Q
EC_Em Q
10 I=2,N

)=X( I )-X(I-1)
N-1
20 I=2 ,NO

=5(I)16.

=(S(I 1+S(I+11 )/3.

=S( I+I )/6,

=(Y( I+I )-Y( I ) )/S( I+I)-(Y( I )-Y( I-I ) )/S( I )

=--,,5

1,

1,

--,,,5

0,

O,

=B(1)
1)=C(1)IW(I)

)=0°

30 I=2 ,N

)=B(I)-A(1)*SB(I-1)

I )=C( I )/W( I )
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30 G( I )=(F( I )-A( I )*O(l-l) )/W(I )

E _._( N )=0 (N)

DO 40 I=2,N

K=N+I-I

40 EM(K) =G( K)-SB (K)*EM(K+I )
SLOPE( I)=-S(2)16._(2.*FM(I)+EM(2) )+(Y(2)-Y(!) )/S(2)

DO50 I=2,N

SLOPE( I)=SII )/6._(2.*E_(1)+EM(I-I))+(Y(I )-Y(I-I))/S(I)

IF (Q.EQ.13) WPITE (6,100) N,(X(I),Y(1),£LOPE(1)_EM(1),I=I,21)

FORMAT (2XI5HN0. OF POINTS =IB/IOXSHX 15XSHY 15X5HSLQDEISX5H

IEM /(4F20.8))

RETURN

END

50

1OR

SUBQOUTINE SOLINT (X,Y,N,7,MAX,YINT)

DIMENSION X(50),Y(5r),S(50),A(50),BI50),C(50),F(50),W(60) ,SB(50) '

IG(50),E_(50),Z(50),YINT(Sm)

COMMON O

INTEGER Q

DO i0 I=2,N

lO S(1)=XCI)-XII-I)

NO=N-I

DO 20

AI

BI

CI

2O F I

AN

Bl

BN=I.O

C I =-.5

F I =O.C

F N =0,0

W i =£(i)

SB(1)=C(1)/W(1)

G(1)=O.O

DO 30 I=2,N

W(1)=B(1)-A(1)*SB(I-I)

£B(1)=C(1)/W(1)

30 G(1)=(r(1)-A(1)*G(I-1))/W(1)

EM(N)=G(N)

DO 40 I=2,N

K=N+I-I

40 EM(K)=G(K)-SB(K)*EM(K+I)

DO 90 I=I,MAX

K=2

IF(Z(1)-X(1)) 60,5C',70

5_ YINT(1)=Y(1)

GO TO 90

60 IF(Z(1).LT.(I.I_X(1)-.I*X(2)))W RITE
GO TO 85

IOCO FORMAT (ITH OUT OF RANGE Z =FIO.6)

65

I=2,NO

=S(I)/6.O

=(S(I)+5(I+1))/3.0

=S(I+1)/6._
=(Y(I+I)-Y(I))/S(I+I)-(Y(I)-Y(I-1))/S(I)

=-,5

=1.0

(6,1000)Z(1)

IF(Z(1).GT.(I.I*X(N)-.I*XIN-1)))

K=N

GO TO m5

WRITE (6,1000)Z(1)
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7_ IFIZIII-X(K)) 85,7q,80
75 YINT(1)=Y{K)

GO TO 90

83 K=K+I

IF('(-N) 70,70,65

85

1

2

90

1010

1

2

iOO

YINT(1) = EM(K-1)*(X(K)-Z(1))**3/6./SIK)+EM(K)*IZ(1)-X(K-I))**3/6.

/SIK)+(Y(K)/SIK)-EM{K)*S(K)/6.)*(Z(1)-X(K-I))+(Y(K-I)/S(K)-FM(K-I)

*S(K)/6.)*(X(K)-Z(1))

CONTI_!UF

IF(Q.EQ.16) WRITE(6,1010)

FORMAT (2X21HN0. OF POINTS

NTS =,I3,/IOX5HX 15XSHY

E20.n))

RETURN

END

N,MAX,(X(1),Y(1)gZ(I),YINT(1),I=I,N)

GIVEN =,13,30H, NO. OF INTERPOLATED POI

12X11HX-INTERPOL.9X11HY-INTERPOL./(4

I0

2O

30

40

65

7O

SUBROUTINE SPLDER(X,Y,N,Z,MAX,DYDX)

DIMENSION X(50),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(_O),

GI5G),EM(50),Z(50),DYDX(50)

DO i0 I=2,N

S(1)=X(1)-X(I-I)

NO=N-I

DO 20 I=2_N_

A I =S(1)/6.0

B I =ISII)+S(I+I))/3._

C I =S(I+I)/6.0

F I =(Y(I+I)-Y(1))/S(I+I)-(Y(1)-YII-1))/S(1)

AN=-.5

B 1 =I.0

B N =1.0

Ci=-.5

FI=G.O

F N =0.0

W I =B(1)

SB(1)=C(1)/W(1)

6(1)=0,0

DO 30 I=2,N

W{I}=QCI}-ACI)*_B(I-1)
SB(1)=C(1)/W(I}

G(1)=(F(1)-A(1)_G(I-I))/W(1)

EM(N)=G(N)

DO 40 I=2,N

K=N+I-I

E_(K)=_(K)-SB(K)_EM(K+I)

D_ 9F' I=I,_AX

K=2

IF(_(I)-X(1)) 6_,70,7_

WPITE (6,10m0)7(I)

FORMAT (17H OUT OF BLADE Z =F10.6)

GO T_ 85

WRITE (6,10_C)Z(1)

K=N

Gn TO _5

IF(ZII)-XIK)) R5,85,80

K=K+]
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IF(K-BI) 70,70,65
85 DYDX(I)=-EMIK-1)_IX(KI-Z(II)*_2/2,O/S(K)+EM(K)*(X(K-1I-Z(I) )*'2/2,

10/S(KI+(Y(K)-Y(K-1))/S(KI-(EM(K)-EM(K-1))*SIK)/6,
9n CONTINUE

100 RETURN

END

SUBRQUTINE INTGPL (X,Y,NtSUM)

DIMENSION X(5C),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(50),
1G(50},EM(50) ,SUM(50)

DIMENSION X(50),Y(50),S(50),A

1G(5O),-E'M(50),SUM(5C)

DO 10 I=2,N

13 S(1)=XII)-X(I-I)

NO=N-1

DO 20 (=2,NO

A I =S(I)/6.0

B I =(S(1)+S(I+I))/_!.0

C I =S(I+I)/6,O

20 F I =(Y(I+I)-YII))/.q(I+ll-(Y(

AN =-,,.5

B 1 =I.0

B iX =I ,0

C 1 =-o5

F 1 =0,0

F N =0,O

W¢I =B(1)

SB(])=C(I )/W(17

G( I )=O,C

DE] 30 I=2,N

W(I)=B(It-A(I)'_SBII-1)

SB( I)=C(I )IW(1)

30 G(I )=(F( I )-A( I )_'G(I-I) ) /W( I )

EM(N)=G(N)

DO 40 I:2,N

K=N+I-I

40 EM( IF) =G(K)-SB (K)*EM( K+I )

SUM(l) :O.C

DO 50 L(=2,N

5C"

50),B(50),C(50) ,F(50),W(50),SB(50),

)-Y(I-I))/S(1)

SUM(K)

A,O

PETURN

END

= SUM(K-I)+S(K)*(y(K)+Y(K-1))/2,0-S(K)_3_(EM(K)+FM(K-1))/2

The subroutine LININT performs linear interpolation of a function of two

variables. It is used here to obtain interpolated values of normal blade

thickness t n from a table of thickness values given as input. The calling

sequence for LININT is as follows:

CALL LININT (XI,YI,X,Y, TN, MX,MY,F)

where
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Xl input, x-coordinate of point for which interpolated function value is
desired

Y1 input, y-coordinate of point for which interpolated function value is
desired

X input array, x-coordinates at which function values are specified

Y input array 3 y-coordinates at which function values are specified

TN input two-dimensional array, function of x and y, first subscript
refers to x-coordinate

MX input 3 number of x values given

MY input, number of y values given

F output, interpolated value

The subroutine LININT is as follows:

SUE 70UTINE LININT IXI,YI,X,Y,TN,MX,MY,F)
C OMMO_' K

DIMENSION X(MX),Y(MY) _.TN(MX,MY)
DO 1C! J3=I,MX

i0 IFIX1.LE.X{J3))GO TO 20

J3=MX

20 DO 30 J4=I,MY
30 IFIY1.LE.Y(J4))GO TO 40

J4=MY
a O Jl=J3-1

J2=J4-1

E°SI=(Xl-XIJ1) )/(X(J3)-XIJ1) )
EDS2=(Y1-Y(J2) } / (YIJZ+)-YIJ2) )
EoS3=I.-EoS1
FoS4=I .-FPS2

F=TN t J1 ,J2 )*EPS3*EPS4+TN (J3,J2) *EPSI*EPS4+TN ( J1 ,J4 )*EPS2*EPS3+
1TN ( J3, J4 ) *EPSI*EPS2

IFIK.EQ.14) WR ITE(6,1 )Xl ,YI,F,JI ,J2,EOSI,EOS2
1 FORMAT {8H LININT3FI0.5,213,2F10.5)

_'=0

RETURN
END

The subroutine CONTIN is used to predict the hub velocity to be used in

the next iteration to satisfy continuity of flow (eq. (6)) between hub and

shroud. An initial estimate is furnished by the main program, say W 1 (see

fig. 12). CONTIN furnishes the next estimate W2 by linear interpolation or

extrapolation from the origin. Subsequent estimates are obtained by linear
interpolation from the two previous estimates.
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r Solution
/

/rTotal weightflow(actual) /_

Computedtotal _X

I

J

Wl W3W2
Assumedrelativevelocityon hub

Figure12. - MethodusedbysubroutineCONTINtodeterminerelativehubvelocity.

If there is choked flow,

there is no solutlon of equa-

tion (i) that will also satisfy

continuity (eq. (6)). In this

case, CONTINwill find the hub

velocity that gives the maximum

calculated weight flow. It
should be noted that CONTIN

does not calculate the weight

flow; this is calculated by the

main program. CONTIN stores

information from up to three

previous iterations to assist

in predicting the next value

to be used for the hub velocity.

The calling sequence for CONTIN

is as follows:

CALL CONTIN (WA,WTFL, IND, I,WT)

where

WA input and output; as input, hub relative velocity used to calculate

latest weight flow and as output, velocity used for next iteration

WTFL input, calculated weight flow based on input value of WA

IND input and output; main program sets IN]) = i to indicate start of weight-

flow calculation for new quasi-orthogonal and CONTIN changes value of

IND for following iterations to indicate procedure followed in calcu-

lating new hub velocity

I input, number of quasl-orthogonal used by subroutine CONTIN in WRITE

statement if there is choked flow

WT input, total weight flow

The subroutine CONTIN is as follows:

SUBROUTINE CQNTIN (WA,WTFL,IND,I,WT)

DIMSNSIRN SOFFD(31,WSImHT(:B)

1_5 O_ TO (IZ_O,15C,ylC,27_,B7n),INO

!6_ SDFTD(1) = WA
WEIGHT(I) = WTFL
WA = WT/WTFL*WA
IND = 2
RETURN

150 IF ((WTFL-WEIGHTI1))/IWA-SPEED(1))} 180,180,160

160 SPEED(2) = WA

WA = (WT-WTFL)/(WTFL-WEIGHT(ll)

1 *(WA-SOFFDI1))+WA
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16! IF(WA-SPEED(2))I63,163,162

162 WA = SOFFD(2)+I00.0

Gg TO 166

I_3 WA = SPEED(2)-I_0.0

166 SPEED(1) = SPEED(2)

WEIGHT(1) = WT_L

RETURN

170 WRITE 16,100C) I,WTFL

IND = 6

R ETURN

183 IND = 3

IF (WTFL.GE,WT) GO TO 14

IF (SPFED(1)-WA) 190,200,200

19n SDEFD(2) = SPEED(l)

SPEED(l) = 2°C*SPEED(1)-WA
SPEED(3) = WA

WEIGHT(2) = WEIGHT(I)

WEIGHT(3) = WTFL

WA = SPEED(l)

RETURN

200 SPEED(2) = WA

SPEED(3) = SPEED(l)

SPrED(1) = 2,0*WA-S_E_D(1)

WEIGHT(2) = WTFL

WEIGHT(3) = WEIGHT(I)

WA = SPEED(l)

RETURN

2It WEIGHT(I) = WTFL

IF (WTFL.GF°WT) GD TQ 14

IF (WFIGHT(ll-WEIGHT(2}) 230,380,220

22_ WEIGHT(?) = WE_nHT(2)

WEIGHT(2) = WEIGHT(1)

SmEFD(3) = SmEFD(2)

SPEED(2) = SPEED(l)

SPEED(I) = 2°C*SPEED(2)-SPEED(3)

WA = SDEED(1)

RETURN

2_C IF (SmEFDI3)-SmEEDI1)-10,n) 170,170,2a0

2&O IND = 4

245 IF (WFIGHT(3)-WFICHT(1)) 260,260,250
250 WA = (SPEED(1)+SPEED(2))/2°O

RETURN

2_0 WA = (f_EED(3)+SmEED(2))/2,O
RETURN

270 IF (SOFED(9)-SPFED(1)-IO°O) 170,170,280

280 IF (WTFL-WEIGHT(2)) 320,350,290

290 IF (WA-SmEED(2)) 310,300,300

300 SPEED(l) = SPEED(2)
SPEED(2) = WA

WEIGHT(I) = WEIGHT(2)

WEIGHT(2) = WTFL
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GO Tq 246
310 SDEEDIm)= SDFFD{2)

SPFFDI2) = W#
WFIGHTIB) = WEImHTI2)
WEIGHTI2) = WTFL

GU TO 245

320 IF (WA-SDFED{2)) 340,BB0,B30

330 WEIGHTI3) = WTFL

SP_FD(3) = WA

GO TO 245

!4q WEIGHT{I) = WTFL

SPEED(]} = WA

GO TO 245

950 IN9 = 5

IF (WA-SPEED(2}} 3_0,B60,!60

!60 SPr_D¿I) = SPEFD{21

WEIGHTII) = WEIGHT(2)

WA = SnFFD(P)

_ETt.)RM

_7C IND = 4

WEIGHTI2) = WTFL

WA = (SPEED(Z}+S°EED(2))/2oO

RETURN

_? IND =

Bg_ WEIGHT(B) = WFIGHT(2)

SOEFD¿3) = SDF_D(2)

SDFFD(2) = (SDFrD(1)+SOEF_(B))/2o

WA = SOEFD(2}

RETURN

lnO0 FORe'AT (/12H FIXED LINt I2,12H,

END

MAX WT = Fln.6)

Sample Output from Program

The output given here is the listing for the case used in the numerical

example. It will be noted that there is an exact listing of all input data

cards at the beginning of the listing. This is followed by the maximum calcu-

lated streamline change for each iteration, which is used as the criterion for

convergence. After 67 iterations, there is convergence within the specified

limit of O.001-inch maximum streamline change. At this time, streamline co-

ordinates are printed together with the velocity and pressure at each point.

This is followed by another iteration to give additional information of inter-

est, such as _, _, and the parameters A, B, C, and D from equation (2).

Since it indicates the smoothness of the streamline at a glance, the streamline

curvature is also printed out. The velocities and the pressures are computed

again on the final iteration so that the variation of these quantities on the

final iteration can be checked.
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RUN _J. 1

10 II

0 0

13 2

0.3000

0.8130

O.

0. 7300

2.2500

1.4785

2.2500

0.6800

O.

-0.0517

-0. 1000

0.6000

0.3850

0.1150

0.3750

0.1650

0.3O50

0.[550

0.3550

0.1460

0.3450

O. 13bO

0.3330

0.i2/0

0.3200

0.1170

0.3100

0.1070

O. JO00

0.0980

0.2_00

O.08dO

0.2510

0.0790

0.2230

0.0700

0.1940

0.0600

O. 1600

0.0500

0.1370

0.0400

0. 1090

0.0300

0.0800

0.0200

-0. 1000

0.6000

0.6500

1.3500

Z .0500

It 13

- 0 0

2 1

0.3400

0.9100

-O.OZ/O

0.9100

2.0520

I .4751

2.0180

0.6750

O.

-0.0972

O.

0. 7000

0. 3580

0. t 500

0.3450

0. t 400

0.333O

O. L310

0.3210

0.1210

0.3100

0.1130

0.3000

0.1040

0.2900

0.0950

0.2790

0.0870

0.2680

0.0790

0.2570

0.0730

0. 2460

0.0670

0.2230

0.061.0

0 • 1940

-0.

0.16o0

--0.

0.1370

--0.

0.1090

--0.

0.0800

--0.

O.

0. 7000

0.7500

l .4500

2. 1500

INPUT DATA CARD LISTING

5390.0000 0.9840 13.0000

592.0000 L55.3000 0.1941

t .0000 -1.0000 -35.00O0

0.3948 0.4810 0.54L2

i .0000

-0.0530 -0.0540 0.00%'0

1.0400

l .8610 L.6800 1.6000

1.4750

1.7630 1.4120 1.2080

0.6750

O. -0.0004 -0.0021

-0.1632 -0.2487 -0.3512

O. 1000 O. 2 000 0.30JO

O. 8000 C. 9000 1. 0000

O. 3220 0.2900 0.2600

0.1280 0.1080 0.0920

O. 3 110 0.2800 O.ZbO0

0. L190 0.1000 0.0840

O. 3000 0.2 700 O. 2400

U.LlO0 0.0920 0.0780

0.2900 0.2590 0.22_0

O.LOLO 0.()850 0.07_0

0.2800 0.2490 0.2 [90

0.0930 0.0790 0.0690

0.2690 0.2580 0.2060

0.0860 0.0130 0.0630

0.2580 0.2210 0.1970

0.0780 0.0680 0.0590

0.2410 0.2150 0.1_60

0.0730 0.0020 0.0550

0.2360 0.2040 O. 1750

0.0686 0.0580 0.05t0

0.2240 O. l 930 O. 1640

0.0620 0.0540 0.04/9

0.2130 C.1820 0.15{0

0.0510 0.0500 0.0430

0.2020 C.t?O0 0.1410

0.0520 0.0400 0.04_0

O. lgO0 0.1590 O.13oO

-0. -0. -0.

0.1660 0.1480 O.1LUO

-0. -0. -0.

0.1370 0.1370 0.10o0

-0. -0. -0.

0.1090 O. LOCI) 0.09_0

-0. -0. -0.

0.0800 0.0800 O._bO0

-0 • -0. -0 •

0.1000 0.2000 0.3000

0. 8000 O. 9000 L.0000

0.8500 0.9500 l .0500

1.5500 1.6500 1.7500

2.2500

L . 4000

O.OOlO

l. 7500

0.619_

O. 1310

L .5341

l .OOl ,)

-0. 0090

-0. 4660

0.400 )

1. L000

O. 2300

J. 0 ?90

0.22OO

0. 0740

0.2100

0.0o90

O. 2000

0.0o40

O. i 000

0. 0590

0.1790

6.056:

O. 16_0

0. 0520

O. lb?O

O. 0490

0. 1470

0. 0460

). 1360

0.0 z.,-30

O. 1240

J. 0400

3. I l 3 )

O.O_TO

0. tu20

_). 091 ;)

--0.

0.080 ,)

-3.

;;). 070 J

-,_.

d. d6UO

0. 4000

t. todd

1. t 5O0

1. 8500

L715.000()

2. 5000

O. [OJO

O. 41 O0

1. 4960

U. 7790

-0.0240

0.50 i) )

0.20 1 (}

O. tUtO

O. to 10

O. 1710

O. 1610

O. 15ac_

0.14 01

O. 13)0

O. 120)

O. 1 tO0

O. lO00

0.089O

U. 0790

0. 0690

0.059O

O. 0500

0.0400

0. 500O

l. 2500

1 • 9500
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STAG. SPEEDCF SOUNDAT INLET :
ITERAT[ON NU. I MAX.
ITERATIUN NO. Z MAX.

[[E_KATIUN NO. 3 MAX.

ITERATION NO. 4 MAX.

ITERATIO_ NO. 5 MAX.

IIERATIGN NO. 6 MAX.

[TERATIUN NO. ? MAX.

ITERATION NO. 8 MAX.

ITERATION NU. 9 MAX.

ITERATION NU. tO MAX.

ITERATICN NO. tI MAX.

ITERATION NO. IZ MAX.

IIERATIGN NO. 13 MAX.

ITERATIUN NO. 14 MAX.

ITbRATIUN hU. 15 MAX.

ITERATICN NC. 16 MAX.

ITERATIGN NO. 17 MAX.

ITERATION NO. 18 MAX.

ITERATION NO. 19 MAX.

ITERATICN NG. 20 MAX.

ITERATIt)N NO. 21 MAX.

ITERATIUN No° 22 MAX.

ITERATIUN NO. 23 MAX°

ITERATION NO. 24 MAX.

ITERATION N_. 2_ MAX.

ITERATIGN NU. 26 MAX.

ITERATION NO. 27 MAX.

ITERATION NU. 28 MAX.

ITERATIUN NO. 29 MAX.

ITERATION NO. 30 MAX.

ITERATION NO. 31 MAX.

ITERATIUN NU. 3Z MAX.

ITERATION NO. 33 MAX°

ITERATION NO. 34 MAX°

ITERATION NO. 3b MAX.

ITERATIUN NO. 30 MAX.

ITERATION NO. 37 MAX.

ITERATION NU. 3_ MAX.

IIERATION NU. 39 MAX.

ITERATION NU. 40 MAX.

ITERATION NU. 41 MAX.

ITERATION NO. 4Z MAX.

ITERATION _t;. 43 MAX.

ITERATION NU. 44 _AX.

ITERATION NU. 4b MAX.

ITERATION NU. 4o MAX.

ITERATICN NU. 41 MAX.

L192.22

STREAMLINE CHANGE = 0.222L )3

SIREAMLINE CHANGE = 0.20dLu3

STREAMLINE CHANGE = 0o164211

STREAMLINE CHANGE = O°I6L84L

STREAMLINE CHANGE = O.14[914

STREAMLINE CHANGE = 0.124332

STREAMLINE CHANGE = O. I0_9_7

STREAMLINE CHANGE = 0.0:>5636

STREAMLINE CHANGE = 0.0H4()35

STREAMLINE CHANGE = 0.0739w2

STREAMLINE CHANGE = 0.')65150

STREAMLINE CHANGE = 0.0574t_

STREAMLINE CHANGE = 0.,',507_5

STREAMLINE CHANGE = 0.044H2l

STREAMLINE CHANGE = 0.939616

STREAMLINE CHANGE = 0.035032

STREAMLINE CHANGE = 0.0339_

STREAMLINE CHANGE = 0.027419

STREAMLINE CHANGE = 0.024267

STREAMLINE CHANGE = 0.02L4_3

STREAMLINE CHANGE = O.dlqO2 3

STREAMLINE CHANGE = 0.01h847

STREAMLINE CHANGE = 0.014923

STREAMLINE CHANGE = 0._132',8

STREAMLINE CHANGE = 9.0_1771

STREAMLINE CHANGE = 0.0 [04hl

STREAMLINE CHANGE = O. 009301

STREAMLIN_ CHANGE = O.OO_2lO

STREAMLINE CHANGE = 0.007356

STREAMLINE CHANGE = 0.00o546

STREAMLINE CHANG_ = 0.005824

STREAMLINE CHANGE = 0.005219

STREAMLINE CHANGE = 0.00 6IO

STREAMLINE CHANGE = 0.u0413)

STREAMLINE CHANGE = 0.00}_?

STREAMLINE CHANGE : 0.003252

STRLAMLINE CHANGE = 0.0029Z5

STREAMLINE CHANGE = O.OOZ6t5

STREAMLINE CHANGE = 0.092326

STREAMLINE CHANGE = O.OOZO_:B

STREAMLINE CHANGE = 0.001845

STREAMLINE CHANGE : 0.c)01645

STREAMLINE CHANGE = _.,)')14_ /

STREAMLINE CHANGE = C].U!)I315

STREAMLINE CHANGE = O.OOI_l

STREAMLINE CHANGE = O. 00 tO",7

STREAMLINE CHANGE - 0.OO09,_7
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